Chapter Six

Array Operations and Linear Equations

1. Array operations

MATLAB has two different types of arithmetic operations:

- □ matrix arithmetic operations
- array arithmetic operations.

A- Matrix arithmetic operations

As we mentioned earlier, MATLAB allows arithmetic operations: +,

-, *, / and ^ to be carried out on matrices. Thus:

A+B or B+A	is valid if A and B are of the same size
A*B	Is valid if number of column of matrix A equals to number of rows of matrix B
A^2	Is valid if A is square matrix and equals A*A
N *A or A* N	Multiplies each element of A by number (N)

B- Array arithmetic operations

the character pairs (.+) and (.-) are not used.

•	Element-by-element multiplication
./	Element-by-element division
• •	Element-by-element exponentiation

>> C = A. * B

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad B = \begin{bmatrix} 10 & 20 & 30 \\ 40 & 50 & 60 \\ 70 & 80 & 90 \end{bmatrix}$$

>> C = A. * B

C = 10 40 90 160 250 360 490 640 810

Also we can write this code as bellow:

```
[M,N] = size(A); % = size(B), as well!
for i = 1:M
    for j = 1:N
        C(i,j) = A(i,j)*B(i,j)
    end
end
```

>> /	A.^2	•	
ans	=		
	1	4	9
	16	25	36
	49	64	81

The relations below summarize the above operations. To simplify, let's consider two vectors U and V with elements U = [ui] and V = [vj].

U. * V	Produces [$u_1^*v_1 u_2^*v_2$	u _n *v _n]
U. / V	Produces [$u_1/v_1 u_2/v_2$	u _n /v _n]
U. ^ V	Produces [u ₁ ^{v1} u ₂ ^{v2}	u _n ^{vn}]

		1.222 1.231
Operation	Matrix	Array
Addition	÷	+
Subtraction	1000	12 <u>-</u>
Multiplication	*	.*
Division	/	./
Left division	ί.	j.
Exponentiation	~	

Table 14: Summary of matrix and array operations

2. Reshaping arrays

1- Create 3D array

Assume X is an i-by-m-by-n matrix. Where, i represents row, m is represents columns and n represents layers.

E.g.: X is a 2×4×3 matrix

>> [i,m,n] = size(X)

2- Building Multidimensional Arrays with the cat Function

B = cat(dim, A1, A2...)

where, A1 & A2 and so on are the arrays to concatenate, and dim is the dimension along which to concatenate the arrays.

For example, to create a new array with cat:

>> A = cat(3, [1 0 3; 4 -1 2; 8 2 1], [6 8 3; 4 3 6; 5 9 2])

B = reshape(A,[s1 s2 s3 ...])

s1, s2, and so on represent the desired size for each dimension of the reshaped matrix.

Note: that a reshaped array must have the same number of elements as the original array (that is, the product of the dimension sizes is constant).

>> B = reshape(A,[3 6])

B =

1 0 3 6 8 3 4 -1 2 4 3 6 8 2 1 5 9 2

The reshape function operates in a column-wise manner. It creates the reshaped matrix by taking consecutive elements down each column of the original data construct

4- Permuting Array Dimensions

B = permute(A, dims);

$$B = permute(A, [2 4 3 1])$$

Α			>> B :	= pe	rmι	ute(A, [2 1 3])	>> B =	: per	mute(A, [3 2 1])
A(:,:,:	1) =		B(:,:,:	1) =			B(:,:,1) =	
							1	0	3
1	0	3	1	4	8		6	8	3
4	-1	2	0	-1	2				
8	2	1	3	2	1		B(:,:,2	2) =	
							4	-1	2
							4	3	6
A(:,:,2	2) =		B(:,:,2	2) =					
							B(:,:	,3) =	
6	8	3	6	4	5		8	2	1
4	3	6	8	3	9		5	9	2
5	9	2	3	6	2				

Examples: If you have a matrix A, which is consist of 4 rows, 2 columns and 1 page A = [5 6; 8 2; 2 2; 1 3]

the order argument of permute function indicates dimensions, are 1 = row, 2 = column and 3 = layer dimensions

B = permute(A,[3,2,1]);

C = permute(A,[3,1,2]);

$$D = permute(A, [1, 3, 2]);$$

E = permute(A,[2,3,1]);

F = permute(A,[2,1,3]);

G = permute(A,[1,2,3]);

% [3,2,1] means [layer,column,row]
% [3,1,2] means [layer,row,column]
% [1,3,2] means [row, layer,column]
% [2,3,1] means [column, layer,row]
% [2,1,3] means [column,row, layer]
% [1,2,3] means [row,column, layer]

	size					
matrix	row	column	layer			
original	4	2	1			
A,[3,2,1]	1	2	4			
A,[3,1,2]	1	4	2			
A,[1,3,2]	4	1	2			
A,[2,3,1]	2	1	4			
A,[2,1,3]	2	4	1			
A,[1,2,3]	4	2	1			

B = permute(A,[3,2,1])

ans(:,:,1) = 5 6 ans(:,:,2) = 8 2 ans(:,:,3) = 2 2 ans(:,:,4) = 1 3

C = permute(A,[3,1,2])

D = permute(A,[1,3,2])
ans(:,:,1) =
5
8
2
1
ans(:,:,2) =
6
2
2
3

E = permute(A,[2,3,1]) ans(:,:,1) = ans(:,:,2) = ans(:,:,3) = ans(:,:,4) =

F = permute(A,[2,1,3]) this is transpose and same as [2,1]

ans =

5 8 2 1 6 2 2 3

G = permute(A,[1,2,3]); this makes no difference

ans =

- 5 6
- 82
- 2 2
- 1 3

3. Rotating matrices and arrays

To rotate an **m-by-n** matrix **X** to **90°** counterclockwise one may use:

Y = rot90(X)

There are another may do it like this:

Y = X(:,n:-1:1) % rotate 90 degrees counterclockwise
Y = X(m:-1:1,:) % rotate 90 degrees clockwise
Y = X(m:-1:1,n:-1:1) % rotate 180 degrees

In the above, one may replace m and n with end.

2 3

>> y = x(4:-1:1,2:-1:1)

4. Solving linear equations

linear equations is written

Ax = b

In linear algebra we learn that the solution to Ax = b can be written as $x = A^{-1}b$, where A^{-1} is the inverse of A.

For example, consider the following system of linear equations

$$x + 2y + 3z = 1$$

 $4x + 5y + 6z = 1$
 $7x + 8y = 1$

The coefficient matrix **A** is

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{bmatrix} \text{ and the vector } b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

There are typically three ways to solve for x in MATLAB:

1. The first one is to use the matrix inverse, inv.

2. The second one is to use the backslash (\)operator.

3- Using "solve" command

Consider the following system of three equations in four unknowns.

x + 2y + 3z + 2w = 1 4x + 5y + 6z + w = 17x + 8y - w = 1

We can solve for x, y, and z in terms of w.

5. Integration and Derivation

1-Integration

Certain functions can be symbolically integrated in MATLAB with the **int** command. Ex: Find the integration for the equation $f = \int x^2 dx$, we need to define x

Ex: Find the integration for the equation $f = \int x^2 dx$, we need to define x symbolically first.

>> syms x >> int(x²) ans = x³/3 **Ex: Evaluate the integral** $f = \int_{1}^{2} x^{2} dx$, In this case, we will use the code int(fun,xmin,xmax). Which, fun is the numerically integrates function, from \mathbf{x}_{min} to \mathbf{x}_{max} .

```
>> int(x^2,1,2)
ans =
7/3
```

Mathematical Operation	MATLAB [®] Command
$\int x^n \ dx$	int(x^n)
$\int_0^{\pi/2} \sin(2x) dx$	int(sin(2*x), 0, pi/2)
g = cos(at + b)	g = cos(a*t + b);
	int(g)
$\int g(t)dt$	or int(g, t)

2- Derivation

We can use the **diff** command to find the derivatives.

```
Ex: find the derivative of x^4
```

```
>> syms x
>> diff(x^4)
ans =
4*x^3
```

Now if we need the **second derivative** of **x**⁴, we use this command:

>> syms x >> diff(x^4,2) ans = 12*x^2

Now, suppose we want to evaluate the derivative at **x** = **2.1**, Enter the command:

```
>> subs( diff(x^4), x , 2.1 )
ans =
37.0440
```

f	diff(f)
syms x n f = x^n;	diff(f) ans = n*x^(n - 1)
syms a b t f = sin(a*t + b);	diff(f) ans = a*cos(b + a*t)
syms theta f = exp(i*theta);	diff(f) ans = exp(theta*i)* i

Mathematical Operator	MATLAB Command
$\frac{df}{dx}$	diff(f) or diff(f, x)
$\frac{df}{da}$	diff(f, a)
$\frac{d^2f}{db^2}$	diff(f, b, 2)

Ex:

```
>> syms s t
>> f = sin(s*t);
>> diff(f,t)
ans =
      s*cos(s*t)
>> syms x
>> f = sin(x^2);
>> df = diff(f,x)
df =
   2*x*cos(x^2)
>> syms x t
>> diff(sin(x*t^2),t)
ans =
   2*t*x*cos(t^2*x)
>> syms x y
>> diff(x*cos(x*y), y, 2)
ans =
-x^3*cos(x*y)
```

Mixed Derivatives

Differentiate this expression with respect to the variables **x** and **y**:

```
>> syms x y
>> diff(x*sin(x*y), x, y)
ans =
```

2*x*cos(x*y) - x^2*y*sin(x*y)

Derivative of a Matrix in Matlab.

We can use the same technique to find the derivative of a matrix. If we have a matrix **A** having the following values:

$$A = \begin{bmatrix} \cos(4x) & 3x \\ x & \sin(5x) \end{bmatrix}$$

>> syms x >> A = [cos(4*x) 3*x ; x sin(5*x)]; >> diff(A)

ans =

$$\begin{bmatrix} -4*\sin(4*x), & 3 \\ 1, & 5*\cos(5*x) \end{bmatrix}$$