
Chapter Six
Array Operations and Linear Equations

1. Array operations

 MATLAB has two different types of arithmetic operations:

 matrix arithmetic operations
 array arithmetic operations.

A- Matrix arithmetic operations
 As we mentioned earlier, MATLAB allows arithmetic operations: +,
-, *, / and ^ to be carried out on matrices. Thus:

A+B or B+A is valid if A and B are of the same size

A*B
Is valid if number of column of matrix A equals to number of

rows of matrix B

A^2 Is valid if A is square matrix and equals A*A

N *A or A* N Multiplies each element of A by number (N)

B- Array arithmetic operations

the character pairs (.+) and (.-) are not used.

. * Element-by-element multiplication

. / Element-by-element division

. ^ Element-by-element exponentiation

>> C = A. * B

𝐴 =
1 2 3
4 5 6
7 8 9

 𝐵 =
10 20 30
40 50 60
70 80 90

>> C = A. * B

 C =
 10 40 90
 160 250 360
 490 640 810

[M,N] = size(A); % = size(B), as well!
for i = 1:M
 for j = 1:N
 C(i,j) = A(i,j)*B(i,j)
 end
end

Also we can write this code as bellow:

>> A.^2
ans=
 1 4 9
 16 25 36
 49 64 81

 The relations below summarize the above operations. To simplify, let's
consider two vectors U and V with elements U =[ui] and V = [vj].

U. * V Produces [u1*v1 u2*v2 …… un*vn]

U. / V Produces [u1/v1 u2/v2 …… un/vn]

U. ^ V Produces [u1
v1 u2

v2 …… un
vn]

2. Reshaping arrays

1- Create 3D array
Assume X is an i-by-m-by-n matrix. Where, i represents row, m is
represents columns and n represents layers.
E.g.: X is a 2×4×3 matrix

>> X= zeros(2,4,3)

X(:,:,1) =

 0 0 0 0

 0 0 0 0

X(:,:,2) =

 0 0 0 0

 0 0 0 0

X(:,:,3) =

 0 0 0 0

 0 0 0 0

Layer 1

Layer 2

Layer 3

Size of matrix X

>> [i,m,n] = size(X)

i =
 2 2 rows

m =
 4 4 columns

n =
 3 3 layers

2- Building Multidimensional Arrays with the cat Function

B = cat(dim, A1, A2...)

where, A1 & A2 and so on are the arrays to concatenate, and dim is the
dimension along which to concatenate the arrays.

For example, to create a new array with cat:

>> A = cat(3, [1 0 3; 4 -1 2; 8 2 1], [6 8 3; 4 3 6; 5 9 2])

3- Reshaping

B = reshape(A,[s1 s2 s3 ...])

 s1, s2, and so on represent the desired size for each dimension of the
reshaped matrix.

Note: that a reshaped array must have the same number of elements as

the original array (that is, the product of the dimension sizes is constant).

>> B = reshape(A,[3 6])

B =

 1 0 3 6 8 3
 4 -1 2 4 3 6
 8 2 1 5 9 2

The reshape function operates in a column-wise manner. It creates the
reshaped matrix by taking consecutive elements down each column of the
original data construct

4- Permuting Array Dimensions

B = permute(A, dims);

A >> B = permute(A, [2 1 3]) >> B = permute(A, [3 2 1])

A(:,:,1) =

 1 0 3

 4 -1 2

 8 2 1

A(:,:,2) =

 6 8 3

 4 3 6

 5 9 2

B(:,:,1) =

 1 4 8

 0 -1 2

 3 2 1

B(:,:,2) =

 6 4 5

 8 3 9

 3 6 2

B(:,:,1) =

 1 0 3

 6 8 3

B(:,:,2) =

 4 -1 2

 4 3 6

 B(:,:,3) =

 8 2 1

 5 9 2

Examples: If you have a matrix A , which is consist of 4 rows, 2 columns and 1 page
A =[5 6 ; 8 2 ; 2 2 ; 1 3]

the order argument of permute function indicates dimensions, are 1 = row,
2 = column and 3 = layer dimensions

 B = permute(A,[3,2,1]); % [3,2,1] means [layer,column,row]
 C = permute(A,[3,1,2]); % [3,1,2] means [layer,row,column]
 D = permute(A,[1,3,2]); % [1,3,2] means [row, layer,column]
 E = permute(A,[2,3,1]); % [2,3,1] means [column, layer,row]
 F = permute(A,[2,1,3]); % [2,1,3] means [column,row, layer]
 G = permute(A,[1,2,3]); % [1,2,3] means [row,column, layer]

matrix
size

row column layer

original 4 2 1

A,[3,2,1] 1 2 4

A,[3,1,2] 1 4 2

A,[1,3,2] 4 1 2

A,[2,3,1] 2 1 4

A,[2,1,3] 2 4 1

A,[1,2,3] 4 2 1

B = permute(A,[3,2,1])

ans(:,:,1) =
 5 6
ans(:,:,2) =
 8 2
ans(:,:,3) =
 2 2
ans(:,:,4) =
 1 3

C = permute(A,[3,1,2])

ans(:,:,1) =
 5 8 2 1
ans(:,:,2) =
 6 2 2 3

D = permute(A,[1,3,2])

ans(:,:,1) =
 5
 8
 2
 1
ans(:,:,2) =
 6
 2
 2
 3

E = permute(A,[2,3,1])
ans(:,:,1) =
 5
 6
ans(:,:,2) =
 8
 2
ans(:,:,3) =
 2
 2
ans(:,:,4) =
 1
 3

F = permute(A,[2,1,3]) this is transpose and same as [2,1]

ans =
 5 8 2 1
 6 2 2 3

G = permute(A,[1,2,3]); this makes no difference

ans =
 5 6
 8 2
 2 2
 1 3

3. Rotating matrices and arrays

To rotate an m-by-n matrix X to 90° counterclockwise one may use:

 Y = rot90(X)

There are another may do it like this:

 Y = X(:,n:-1:1) % rotate 90 degrees counterclockwise

 Y = X(m:-1:1,:) % rotate 90 degrees clockwise

 Y = X(m:-1:1,n:-1:1) % rotate 180 degrees

In the above, one may replace m and n with end.

>> y = rot90(x)
y =
 3 5 7 9
 2 4 6 8

>> y = x(:,2:-1:1)
y =
 3 2
 5 4
 7 6
 9 8

>> y = x(4:-1:1,:)
y =
 8 9
 6 7
 4 5
 2 3

>> y = x(4:-1:1,2:-1:1)
y =
 9 8
 7 6
 5 4
 3 2

4. Solving linear equations

linear equations is written

Ax = b

In linear algebra we learn that the solution to Ax = b can be
written as x = A-1b, where A-1 is the inverse of A.

For example, consider the following system of linear equations
 x + 2y + 3z = 1
 4x + 5y + 6z = 1
 7x + 8y = 1

The coefficient matrix A is

 𝐴 =
1 2 3
4 5 6
7 8 0

 and the vector 𝑏 =
1
1
1

There are typically three ways to solve for x in MATLAB:

1. The first one is to use the matrix inverse, inv.

>> A = [1 2 3; 4 5 6; 7 8 0];
>> b = [1; 1; 1];
>> x = inv(A)*b
 x =
 -1.0000
 1.0000
 -0.0000

2. The second one is to use the backslash (\)operator.

>> A = [1 2 3; 4 5 6; 7 8 0];
>> b = [1; 1; 1];
>> x = A\b
 x =
 -1.0000
 1.0000
 -0.0000

3- Using "solve" command

 syms x y z
 eq1 = 'x + 2*y + 3*z = 1';
 eq2 = '4*x + 5*y + 6*z = 1';
 eq3 = '7*x + 8*y = 1';
 [x,y,z] = solve(eq1, eq2, eq3)

Consider the following system of three equations in four
unknowns.

 x + 2y + 3z +2w = 1
 4x + 5y + 6z+ w = 1
 7x + 8y - w = 1

We can solve for x, y, and z in terms of w.

 syms x y z w
 eq1 = 'x + 2*y + 3*z+2*w = 1';
 eq2 = '4*x + 5*y + 6*z+w = 1';
 eq3 = '7*x + 8*y-w = 1';
 [x,y,z] = solve(eq1, eq2, eq3, 'x,y,z')

5. Integration and Derivation

1- Integration

Certain functions can be symbolically integrated in MATLAB with the int
command.

Ex: Find the integration for the equation 𝒇 = 𝒙𝟐 𝒅𝒙 , we need to define x

symbolically first.

>> syms x
>> int(xˆ2)
 ans =
 x^3/3

Ex: Evaluate the integral 𝒇 = 𝒙𝟐 𝒅𝒙
𝟐

𝟏
 , In this case, we will use

the code int(fun,xmin,xmax). Which, fun is the numerically

integrates function, from xmin to xmax .

>> int(x^2,1,2)

 ans =

 7/3

Mathematical Operation MATLAB® Command

 𝑥𝑛 𝑑𝑥

int(x^n)

 sin(2x)dx

𝜋
2

0

int(sin(2*x), 0, pi/2)

g = cos(at + b)

 g(t)dt

g = cos(a*t + b);

int(g)

 or int(g, t)

2- Derivation

We can use the diff command to find the derivatives.

Ex: find the derivative of x4

>> syms x
>> diff(x^4)
 ans =
 4*x^3

Now if we need the second derivative of x4, we use this command:

>> syms x
>> diff(x^4,2)
 ans =
 12*x^2

Now, suppose we want to evaluate the derivative at x = 2.1, Enter the
command:

>> subs(diff(x^4), x , 2.1)
 ans =
 37.0440

f diff(f)

syms x n

f = x^n;

diff(f)

ans =

n*x^(n - 1)

syms a b t

f = sin(a*t + b);

diff(f)

ans =

a*cos(b + a*t)

syms theta

f = exp(i*theta);

diff(f)

ans =

exp(theta*i)* i

Mathematical Operator MATLAB Command

𝑑𝑓

𝑑𝑥

diff(f) or diff(f, x)

𝑑𝑓

𝑑𝑎

diff(f, a)

𝑑2𝑓

𝑑𝑏2

diff(f, b, 2)

Ex:
>> syms s t
>> f = sin(s*t);
>> diff(f,t)
 ans =
 s*cos(s*t)

>> syms x
>> f = sin(x^2);
>> df = diff(f,x)
df =
 2*x*cos(x^2)

>> syms x t
>> diff(sin(x*t^2),t)
 ans =
 2*t*x*cos(t^2*x)

>> syms x y
>> diff(x*cos(x*y), y, 2)
ans =
-x^3*cos(x*y)

Mixed Derivatives
Differentiate this expression with respect to the variables x and y:
>> syms x y
>> diff(x*sin(x*y), x, y)
 ans =
 2*x*cos(x*y) - x^2*y*sin(x*y)

•Derivative of a Matrix in Matlab

We can use the same technique to find the derivative of a matrix. If we

have a matrix A having the following values:

>> syms x

>> A = [cos(4*x) 3*x ; x sin(5*x)];

>> diff(A)

 ans =

 [-4*sin(4*x) , 3]

 [1 , 5*cos(5*x)]

http://tutorial45.com/wp-content/uploads/2015/07/matlab-derivative8.png

