Chapter Six
 Array Operations and Linear Equations

1. Array operations

MATLAB has two different types of arithmetic operations:
\square matrix arithmetic operations
\square array arithmetic operations.

A- Matrix arithmetic operations

As we mentioned earlier, MATLAB allows arithmetic operations: +, $-{ }^{*}, / /$ and ${ }^{\wedge}$ to be carried out on matrices. Thus:

$A+B$ or $B+A$	is valid if A and B are of the same size
$A^{*} B$	Is valid if number of column of matrix A equals to number of rows of matrix B
$A^{\wedge} 2$	Is valid if A is square matrix and equals $A * A$
$N^{*} A$ or $A * N$	Multiplies each element of A by number (N)

B- Array arithmetic operations

the character pairs (.+) and (.-) are not used.

$\gg \mathrm{C}=\mathrm{A} .{ }^{*} \mathrm{~B}$

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad B=\left[\begin{array}{lll}
10 & 20 & 30 \\
40 & 50 & 60 \\
70 & 80 & 90
\end{array}\right]
$$

$\gg \mathrm{C}=\mathrm{A} .{ }^{*} \mathrm{~B}$

$$
C=\begin{array}{ccc}
& & \\
10 & 40 & 90 \\
160 & 250 & 360 \\
490 & 640 & 810
\end{array}
$$

Also we can write this code as bellow:
$[\mathbf{M}, \mathbf{N}]=\operatorname{size}(A) ; \quad \%=\operatorname{size}(B)$, as well! for $i=1$: M
for $\mathrm{j}=1$: N

$$
C(i, j)=A(i, j) * B(i, j)
$$

end
end

```
>> A.^2
ans=
    14 9
    16 25 36
    4 9 6 4 8 1
```

The relations below summarize the above operations. To simplify, let's consider two vectors U and V with elements $\mathrm{U}=[\mathrm{ui}]$ and $\mathrm{V}=[\mathrm{vj}]$.

Table 14 : Summary of matrix and array operations

Operation	MatriX	Array
Addition	+	+
Subtraction	-	-
Multiplication	$*$	+
Division	\langle	\vdots
Left division	\vdots	\vdots
Exponentiation		\vdots

2. Reshaping arrays

1- Create 3D array

Assume X is an i-by-m-by-n matrix. Where, i represents row, m is represents columns and n represents layers.

E.g.: X is a $2 \times 4 \times 3$ matrix

>> $\mathrm{X}=$ zeros $(2,4,3)$
$X(:,:, 1)=$

$\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$
$\begin{array}{ll}\text { Size of matrix } X \\ \gg[i, m, n]=\operatorname{size}(X) & \\ i=\begin{array}{ll}2 & 2 \text { rows } \\ m= & 4 \text { columns } \\ n= & 3 \text { layers }\end{array}\end{array}$

2- Building Multidimensional Arrays with the cat Function

$$
B=\operatorname{cat}(\operatorname{dim}, A 1, A 2 \ldots)
$$

where, A1 \& A2 and so on are the arrays to concatenate, and dim is the dimension along which to concatenate the arrays.

For example, to create a new array with cat:

$$
\text { >> A = cat(3, [1 0 3; 4-1 2; } 82 \text { 1], [6 } 8 \text { 3; } 43 \text { 6; } 59 \text { 2]) }
$$

$A(:,:, 1)=$		
1	0	3
4	-1	2
8	2	1
$A(:,:, 2)$		
6	8	3
4	3	6
5	9	2

3- Reshaping

B = reshape(A,[s1 s2 s3 ...])

s1, s2, and so on represent the desired size for each dimension of the reshaped matrix.
>> $B=$ reshape $(A,[36])$
$B=$

1	0	3	6	8	3
4	-1	2	4	3	6
8	2	1	5	9	2

reshape(M, [6 5])

1	3	5	7	5
9	6	7	5	5
8	5	2	9	3
2	4	9	8	2
0	3	3	8	1
1	0	6	4	3

reshape(C, [6 2])

1	6
3	8
2	9
4	11
5	10
7	12

The reshape function operates in a column-wise manner. It creates the reshaped matrix by taking consecutive elements down each column of the original data construct

4- Permuting Array Dimensions
B = permute(A, dims);

$$
B=\text { permute }\left\{A,\left[\begin{array}{llll}
2 & 4 & 3 & 1
\end{array}\right]\right)
$$

A		>> $B=p$	mute(A, [2 13 3])	>> $\mathrm{B}=$ per	mute(A, [3 21 1])		
$A(:,: 1)=$		$\mathrm{B}(:, \mathrm{i}, 1)=$		$\mathrm{B}(:,:, 1)=$			
		10	3				
10	3			14	8	68	3
$4-1$	2	0 -1	2				
82	1	32	1	$\mathrm{B}(,:, 2 \mathrm{2})=$			
				$4-1$	2		
				43	6		
$A(:,: 2)=$		$\mathrm{B}(, ., 2)=$					
		$\mathrm{B}(, ., 3 \mathrm{~B})=$					
	3			64	5	82	1
	6	83	9	59	2		
59	2	36	2				

Examples: If you have a matrix A , which is consist of 4 rows, 2 columns and 1 page $A=\left[\begin{array}{lllll}5 & 6 ; 8 & 2 ; 2 & 2 ; 1 & 3\end{array}\right]$
the order argument of permute function indicates dimensions, are $1=$ row, 2 = column and 3 = layer dimensions
$B=\operatorname{permute}(A,[3,2,1]) ;$
$C=$ permute(A, $[3,1,2]) ;$
$D=\operatorname{permute}(A,[1,3,2]) ;$
$E=\operatorname{permute}(A,[2,3,1]) ;$
$F=$ permute(A, $[2,1,3]) ;$
$G=\operatorname{permute}(A,[1,2,3]) ;$
\% [3,2,1] means [layer,column,row]
\% [3,1,2] means [layer,row,column]
$\%[1,3,2]$ means [row, layer,column]
$\%[2,3,1]$ means [column, layer,row]
$\%[2,1,3]$ means [column,row, layer]
$\%[1,2,3]$ means [row,column, layer]

matrix	size		
	row	column	layer
original	4	2	1
A,[3,2,1]	1	2	4
$\mathbf{A},[\mathbf{3 , 1 , 2]}$	1	4	2
$\mathbf{A},[1,3,2]$	4	1	2
$\mathbf{A},[\mathbf{2 , 3 , 1}]$	2	1	4
$\mathbf{A},[\mathbf{2 , 1 , 3}]$	2	4	1
$\mathbf{A},[\mathbf{1 , 2 , 3}]$	4	2	1

```
B = permute(A,[3,2,1])
ans(:,:,1) =
    5 6
ans(:,:,2) =
    8
ans(:,:,3) =
    2 2
ans(:,:,4) =
    1 3
C = permute(A,[3,1,2])
ans(:,:,1) =
    5 8 2 1
ans(:,:,2) =
        6 2 2 3
```

D = permute (A,[1,3,2])
$\operatorname{ans}(:,:, 1)=$
5
8
2
1
ans(:,:,2) =
6
2
2
3
$\mathrm{E}=$ permute(A,[2,3,1])
ans $(:,:, 1)=$
5
6
ans $(:,:, 2)=$
8
2
ans $(:,:, 3)=$
2
2
ans $(:,:, 4)=$
1
3

```
F = permute(A,[2,1,3]) this is transpose and same as [2,1]
ans =
    5 8
    6 2 2 3
G = permute(A,[1,2,3]); this makes no difference
ans =
5 6
8
2
1 3
```


3. Rotating matrices and arrays

To rotate an \mathbf{m}-by-n matrix \mathbf{X} to $\mathbf{9 0}^{\boldsymbol{\circ}}$ counterclockwise one may use:

$$
Y=\operatorname{rot} 90(X)
$$

There are another may do it like this:

$$
\begin{array}{ll}
\mathrm{Y}=\mathrm{X}(:, \mathrm{n}:-1: 1) & \text { \% rotate } 90 \text { degrees counterclockwise } \\
\mathrm{Y}=\mathrm{X}(\mathrm{~m}:-1: 1,:) & \text { \% rotate } 90 \text { degrees clockwise } \\
\mathrm{Y}=\mathrm{X}(\mathrm{~m}:-1: 1, \mathrm{n}:-1: 1) & \text { \% rotate } 180 \text { degrees }
\end{array}
$$

In the above, one may replace m and n with end.

$$
\begin{aligned}
& \text { >> y = rot90(x) } \\
& y= \\
& \begin{array}{llll}
3 & 5 & 7 & 9
\end{array} \\
& 2468 \\
& \gg y=x(:, 2:-1: 1) \\
& y= \\
& 32 \\
& 54 \\
& 76 \\
& 98 \\
& \gg y=x(4:-1: 1,:) \\
& y= \\
& 89 \\
& 67 \\
& 45 \\
& 23 \\
& \gg y=x(4:-1: 1,2:-1: 1) \\
& y= \\
& 98 \\
& 76 \\
& 54 \\
& 32
\end{aligned}
$$

4. Solving linear equations

linear equations is written

$$
A x=b
$$

In linear algebra we learn that the solution to $\mathbf{A x}=\mathbf{b}$ can be written as $x=A^{-1} b$, where A^{-1} is the inverse of A.

For example, consider the following system of linear equations

$$
\begin{array}{r}
x+2 y+3 z=1 \\
4 x+5 y+6 z=1 \\
7 x+8 y \quad=1
\end{array}
$$

The coefficient matrix \mathbf{A} is

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 0
\end{array}\right] \quad \text { and the vector } \quad b=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

There are typically three ways to solve for x in MATLAB:

1. The first one is to use the matrix inverse, inv.
>> A = [1 2 3; 45 6; 78 0];
>> b = [1; 1; 1];
$\gg x=\operatorname{inv}(A)^{*} b$
$\mathrm{x}=$
-1.0000
1.0000
-0.0000
2. The second one is to use the backslash (
)operator.
>> A = [1 2 3; 45 6; 78 0];
$\gg b=[1 ; 1 ; 1] ;$
$\gg x=A \mid b$

$$
x=
$$

-1.0000
1.0000
-0.0000

3- Using "solve" command

$$
\begin{aligned}
& \text { syms } x y z \\
& \text { eq1 }=\text { 'x }+2^{*} y+3^{*} z=1 \text { '; } \\
& \text { eq2 = '4*x } 5^{*} y+6^{*} z=1^{\prime} ; \\
& \text { eq3 = '7* } x+8^{*} y=1^{\prime} ; \\
& {[x, y, z]=\text { solve(eq1, eq2, eq3) }}
\end{aligned}
$$

Consider the following system of three equations in four unknowns.

$$
\begin{aligned}
x+2 y+3 z+2 w & =1 \\
4 x+5 y+6 z+\quad w & =1 \\
7 x+8 y \quad-w & =1
\end{aligned}
$$

We can solve for x, y, and z in terms of w.

```
syms x y z w
eq1 = 'x + 2*y + 3* z+2*w = 1';
eq2 = '4*x + 5*'y + 6*z+w = 1';
eq3 = '7*x + 8*y-w = 1';
[x,y,z] = solve(eq1, eq2, eq3, 'x,y,z')
```


5. Integration and Derivation

1- Integration

Certain functions can be symbolically integrated in MATLAB with the int command.
Ex: Find the integration for the equation $f=\int x^{2} d x$, we need to define x symbolically first.

```
>> syms x
>> int(x^2)
ans =
    x^3/3
```

Ex: Evaluate the integral $f=\int_{1}^{2} x^{2} d x$, In this case, we will use the code int(fun,xmin,xmax). Which, fun is the numerically integrates function, from $\mathbf{x}_{\text {min }}$ to $\mathbf{x}_{\text {max }}$.
$\gg \operatorname{int}\left(x^{\wedge} 2,1,2\right)$
ans =
7/3

Mathematical Operation	MATLAB ${ }^{\circledR}$ Command
$\int x^{n} d x$	$\operatorname{int}\left(\mathrm{x}^{\wedge} \mathrm{n}\right)$
$\int_{0}^{\pi / 2} \sin (2 \mathrm{x}) \mathrm{dx}$	$\operatorname{int}\left(\sin \left(2^{*} \mathrm{x}\right), 0, \mathrm{pi} / 2\right)$
$\mathbf{g}=\cos (\mathrm{at}+\mathrm{b})$	$\mathrm{g}=\cos \left(\mathrm{a}^{*} \mathrm{t}+\mathrm{b}\right) ;$ $\operatorname{int}(\mathrm{g})$
$\operatorname{cor} \operatorname{gnt}(\mathrm{g}, \mathrm{t}) \mathrm{dt}$	

2- Derivation

We can use the diff command to find the derivatives.

Ex: find the derivative of x^{4}
>> syms x
>> diff($x^{\wedge} 4$) ans =

4* ${ }^{\wedge}$ ^3

Now if we need the second derivative of x^{4}, we use this command:
>> syms x
>> diff($x^{\wedge} 4,2$)
ans =
$12 * x^{\wedge} 2$

Now, suppose we want to evaluate the derivative at $x=2.1$, Enter the command:
>> subs(diff($\left.x^{\wedge} 4\right), x, 2.1$)
ans =
37.0440

f	diff(f)
$\begin{aligned} & \text { syms } x n \\ & f=x^{\wedge} n ; \end{aligned}$	$\begin{aligned} & \text { diff(f) } \\ & \text { ans }= \\ & n^{*} x^{\wedge}(n-1) \end{aligned}$
syms abt $f=\sin \left(a^{*} t+b\right) ;$	```diff(f) ans = a*}\operatorname{cos}(b+a*t```
syms theta $\mathrm{f}=\exp \left(\mathrm{i}^{*}\right.$ theta);	```diff(f) ans = exp(theta*i)*i```

Mathematical Operator	MATLAB Command
$\frac{d f}{d x}$	$\operatorname{diff}(\mathrm{f}) \operatorname{or} \operatorname{diff}(\mathrm{f}, \mathrm{x})$
$\frac{d f}{d a}$	$\operatorname{diff}(\mathrm{f}, \mathrm{a})$
$\frac{d^{2} f}{d b^{2}}$	$\operatorname{diff}(\mathrm{f}, \mathrm{b}, 2)$

```
Ex:
>> syms s t
>> f= sin(s*t);
>> diff(f,t)
ans =
    s*\operatorname{cos}(s*t)
>> syms x
>> f = sin(x^2);
>> df = diff(f,x)
df=
    2*}\mp@subsup{x}{}{*}\operatorname{cos}(\mp@subsup{x}{}{\wedge}2
>> syms x t
>> diff(sin(x*t^2),t)
    ans =
    2*t*x*}\operatorname{cos}(\mp@subsup{t}{}{\wedge}2*x
>> syms x y
>> diff(x* cos(x*y), y, 2)
ans =
-x^3*}\operatorname{cos}(\mp@subsup{x}{}{*}y
```


Mixed Derivatives

Differentiate this expression with respect to the variables x and y :
>> syms x y
>> $\operatorname{diff}\left(x^{*} \sin \left(x^{*} y\right), x, y\right)$
ans =
$2 * x^{*} \cos \left(x^{*} y\right)-x^{\wedge} \mathbf{2}^{*} y^{*} \sin \left(x^{*} y\right)$
Derivative of a Matrix in Matlab•
We can use the same technique to find the derivative of a matrix. If we have a matrix \mathbf{A} having the following values:
>> syms x

$$
A=\left[\begin{array}{cc}
\cos (4 x) & 3 x \\
x & \sin (5 x)
\end{array}\right]
$$

$\gg \mathrm{A}=\left[\cos \left(4^{*} \mathrm{x}\right) 3^{*} \mathrm{x} ; \mathrm{x} \sin \left(5^{*} \mathrm{x}\right)\right] ;$
>> diff(A)
ans =

$$
\begin{aligned}
& {[-4 * \sin (4 * x), \quad 3]} \\
& {\left[\begin{array}{cc}
3 * & 3 * \cos (5 * x)]
\end{array}\right.}
\end{aligned}
$$

